Roundabouts vs. Signals

When, Where & How to Decide What's Best

BenJetta L. Johnson, P.E. August 21, 2008

Objectives

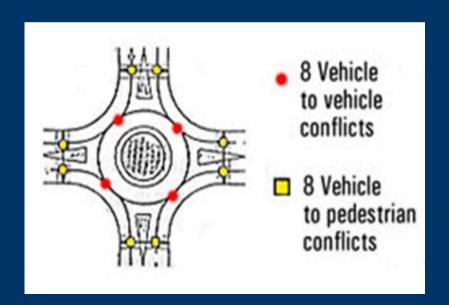
- Summarize differences between roundabouts and traffic signals
- Identify good locations and conditions for roundabouts
- Identify red flags conditions where roundabouts are not the best option
- Examine comparative analysis of roundabouts and signals at intersections around the State

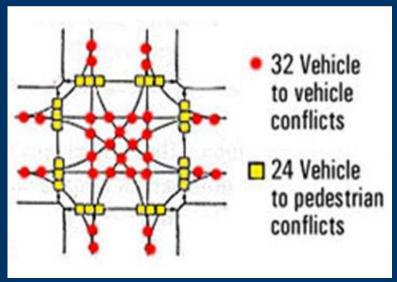
Roundabouts

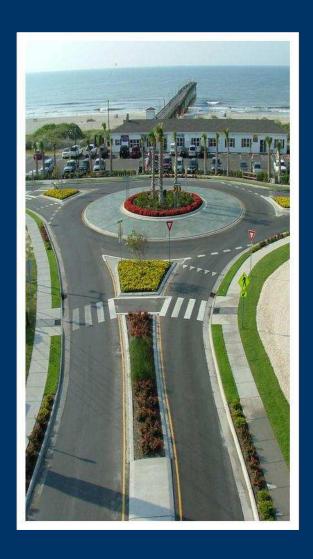
- One-way, circular intersection
- Eliminates left turns
- Reduces occurrence and severity of crashes

Design features of a roundabout include: Yield control of entering traffic; Channelized approaches that deflect traffic into one-way, counterclockwise flow; and Geometric curvature of the circular road and angles of entry to slow the speed of vehicles. These features effectively decrease driving speeds to 30 mph or less.

Traffic Signals




- Controls the assignment of vehicular and pedestrian right of way where potentially hazardous conflicts exist or where passive devices do not adequately control
- Timing operations can be pre-timed or traffic-actuated
- There are three basic types of trafficactuated controllers: Semi-actuated, Fully actuated and Volume-density


In a roundabout, opposing turns will cross one another. In a conventional intersection, those same turns do not cross each other.

The frequency of crashes at an intersection is related to the number of conflict points. A conflict point is a location where the paths of two motor vehicles, bicycles or pedestrians connect. The figure shows the conflict points of a traditional four leg intersection and a roundabout.

When is a Roundabout Appropriate?

Roundabouts are considered for a variety of reasons ranging from community enhancement and traffic calming, to safety improvements and operational benefits.

A key factor in deciding if a roundabout is an appropriate intersection treatment is the traffic demand.

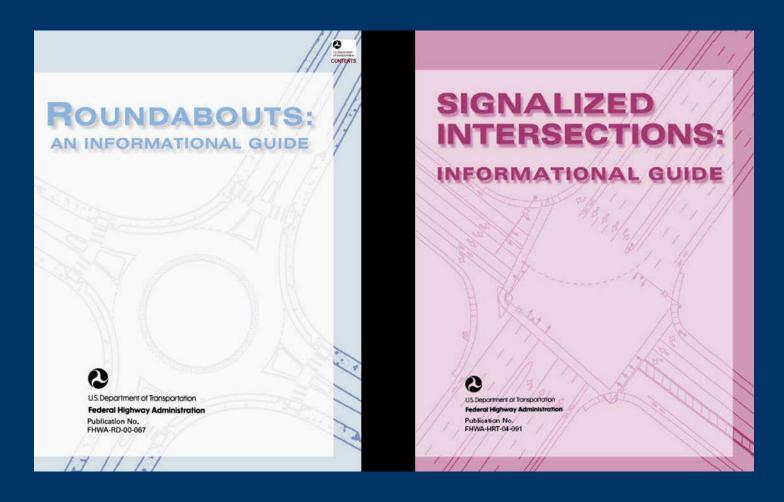
Maximum daily service volumes*:

- Single-lane = 20,000 to 26,000 vpd
- Dual-lane = 40,000 to 50,000 vpd

When is a Roundabout Appropriate?

After traffic demand has been determined you should also evaluate the following intersection characteristics.

- Doesn't meet signal warrants
- Four-way stop condition
- Unusual geometry
- Changing traffic patterns
- Desire for aesthetic interest or gateway experience


Not So Good Idea

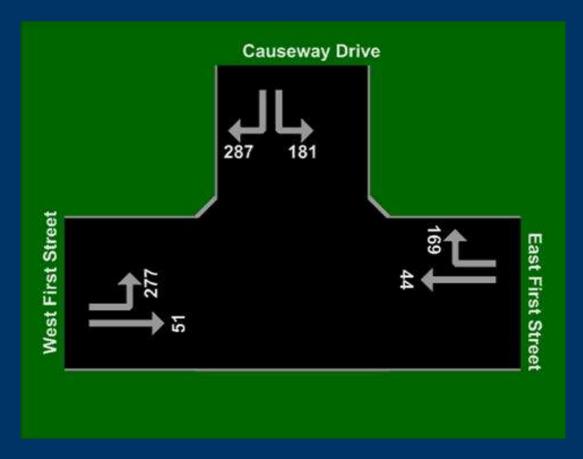
- High speed facility
 - Right-of-way constraints
 - Grade issues (>3% on entry, >4% around circle)
 - High volume of trucks or pedestrians
- Adjacent signals nearby

When is a Roundabout Appropriate?

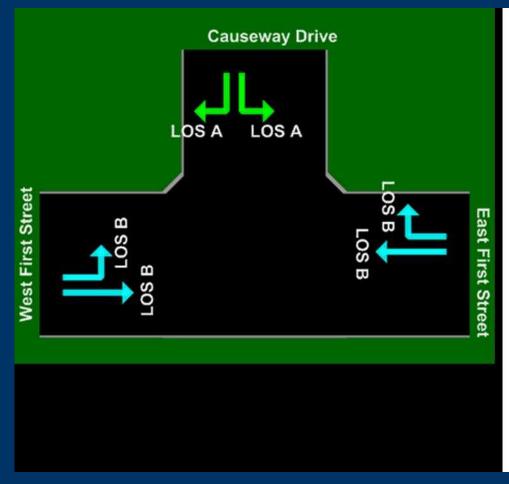
Resource Materials

Which Option Works Best?

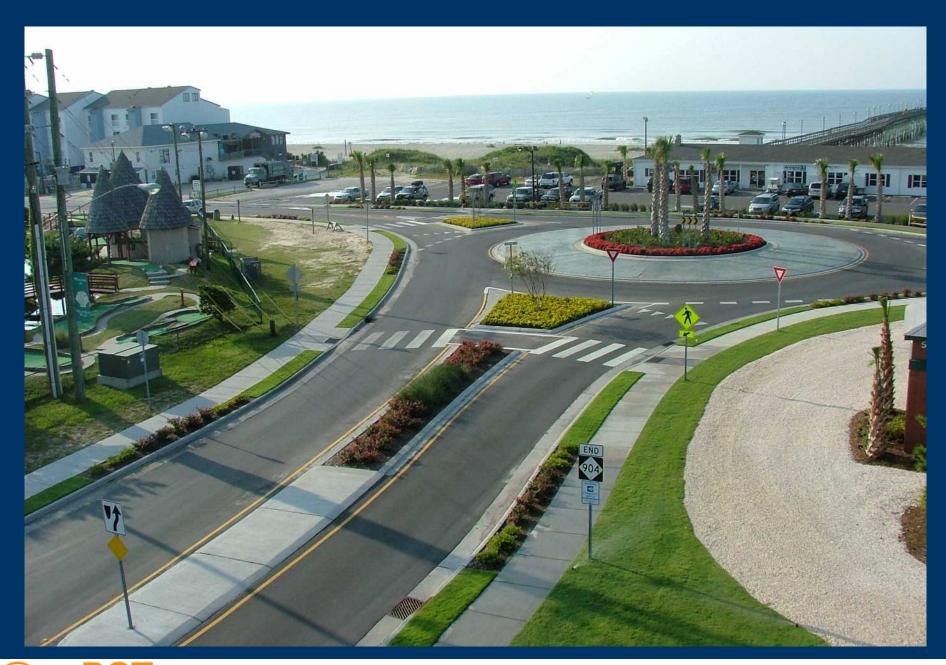
Ocean Isle Beach – NC 904 (Causeway Drive) & 1st Street


Intersection Characteristics:

- Three-legged, with perpendicular approach angles
- Right-of-way constraints (Pier, Putt-Putt park, Buildings)
- Parking adjacent to roadside
- Pedestrian activity
- High Summer tourist traffic



Peak Hour Traffic Volumes



 Volumes included a seasonal factor to account for heavier summer traffic

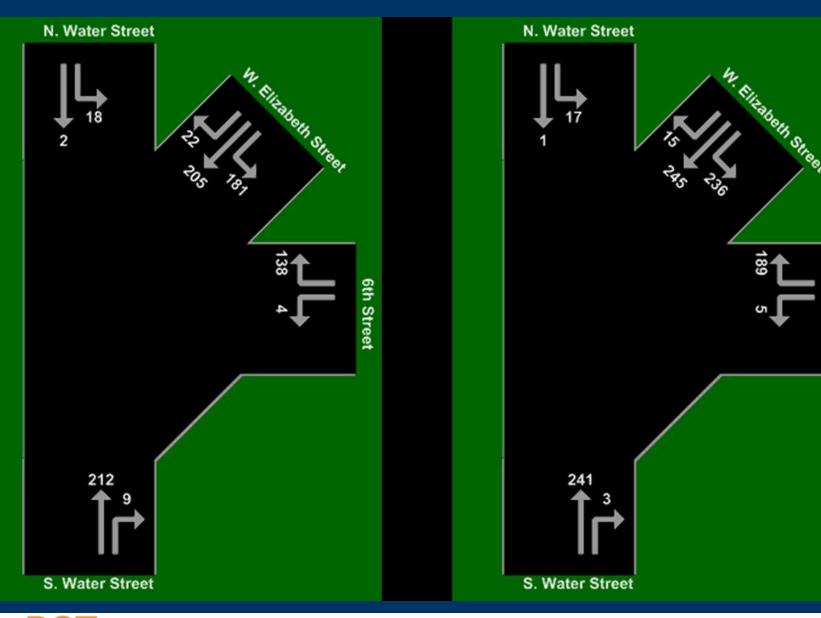
Level of Service

Flow Scale = 248* Spare Capacity								
Table S.15 - CAPACITY AND LEVEL OF SERVICE								
Mov Mov No. Typ	Flow (veh /h)	Total Cap. (veh /h)	Deg. of Satn (v/c)	Aver. Delay (sec)				
West: West First Street 12 LT 904 1079 0.838 15.1 B								
			0.838					
East: East First Street								
22 TR			0.847*					
			0.847					
North: Causeway Drive								
42 LR			0.756					
		1707	0.756	4.6	A			
ALL VEHICLE	S: 2780	3477	0.847	11.0	В			

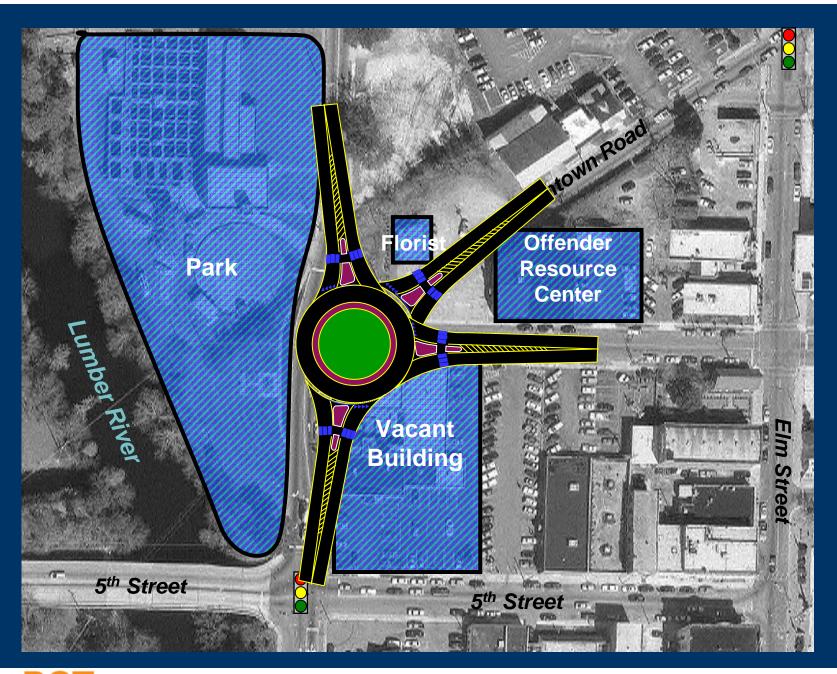
Which Option Works Best?

Lumberton - Water Street, Elizabeth Road, & 6th Street

Intersection characteristics:


- Existing signal (Pre-timed)
- Four-legged, with awkward approach angles
- Right-of-way constraints (e.g. River, Park, Buildings)
- Adjacent signals

Peak Hour Traffic Volumes



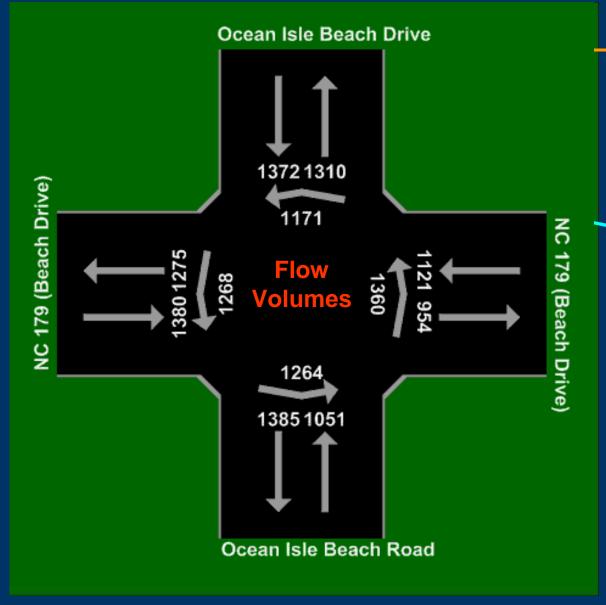
Level of Service N. Water Street LOS C LOS C 6th Street LOS C LOS C

Flow Scale 244% Spare Capacity								
Table S.15 - CAPACITY AND LEVEL OF SERVICE								
Mov Mov								
No. Typ	Flow	Cap.	of	Delay				
	(veh	(veh	Satn					
	/h)		(v/c)					
South: S. Water Street								
32 T	653	772	0.846*	24.6	C			
33 R			0.818					
	662	783	0.846	24.6	С			
East: 6th Street								
22 L	14	18	0.778	27.6	С			
23 R			0.769					
	526	684	0.778	22.6	С			
NorthEast: W. Elizabeth Street								
62 LT	1304	1786	0.730	13.4	В			
63 R	41	56	0.732	7.7	A			
			0.732					
North: N. Water Street								
42 L			0.152					
43 T			0.154					
		329	0.154	29.3	С			
ALL VEHICLE		3638	0.846	18.4	В			

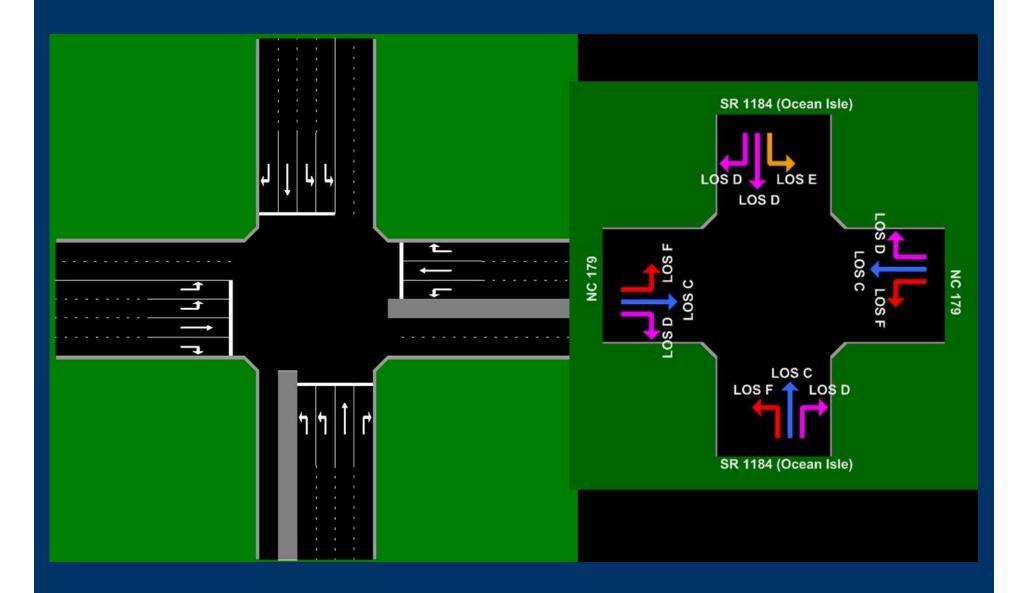
S. Water Street

Which Option Works Best?

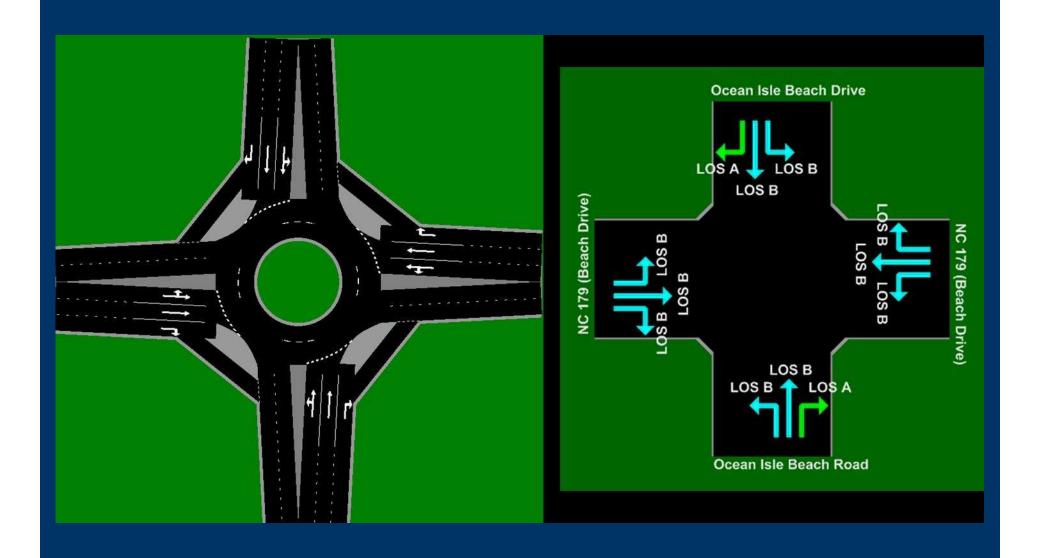
Ocean Isle Beach - NC 179/904 & Ocean Isle Beach Road


Intersection Characteristics:

- Existing signal (Fully Actuated)
- Right-of-way constraints (Airport, Gas Station, Building)
- High Summer tourist traffic
- 45 mph posted speed limit
- Rural location


Peak Hour Traffic Volumes

- Left turn volumes warrant dual lanes at existing traffic signal
- High right turn
 volumes warrant
 exclusive turn lanes
- Relatively balanced volumes but too HIGH for single lane roundabout



Traffic Signal Analysis

Roundabout Analysis

MOEs	Approach	- 5	ıal La ındab		Modified Traffic Signal	
LOS	West		В		E	
	South	В			F	
	East	В			F	
	North		В		D	
v/c	West	0.842			1.035	
	South	0.755			1.748	
	East	0.722			1.286	
	North	0.831			0.77	
Average Delay (sec)	West	16.6			68.3	
	South	15.5			207.7	
	East	16.3			82.2	
	North	16.6			49.4	
Queue (feet)	West		228		612	
	South		174		909	
	East		169		875	
	North		245		1014	

- Both options require additional right-of-way.
 The roundabout will require more at the circle, but less on the approaches
- Dual lane roundabout provides a significant LOS improvement over the signal
- Roundabout also reduces approach delays and queuing by 60% to 90%

For more information, contact

BenJetta L. Johnson, P.E.

Congestion Mgmt. Regional Engineer (Div. 1-4,6) benjettajohnson@ncdot.gov (919) 773-2992

